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Abstract. The Raman interaction of a ultracold ion trapped with two travelling wave lasers is studied
analytically with series solutions, in the absence of the rotating wave approximation (RWA) and without
restrictions of both the Lamb-Dicke limit and the weak excitation regime. The comparison is made between
our solutions and those obtained under the RWA in order to demonstrate the validity region of the RWA.
As a practical example, the preparation of Schrödinger-cat states is proposed beyond the weak excitation
regime, using our calculations.

PACS. 42.50.Dv Nonclassical field states; squeezed, antibunched, and sub-Poissonian states; operational
definitions of the phase of the field; phase measurements – 32.60.+i Zeeman and Stark effects

1 Introduction

The preparation of ultracold ions as well as the produc-
tion of nonclassical motional states for these ions plays a
central role in ion trap experiments [1–3]. As the trapped
ion system is in near perfect isolation, immune from the
violation of the environment, and at the same time the
electric-dipole forbidden transition is usually introduced
to avoide the dissipation of the ion, decoherence in the
preparation and preservation of nonclassical states can
be effectively suppressed. Consequently, the ion trap sys-
tem is also considered to be a promising tool for quantum
computing [4–6].

The various theoretical schemes for generating the
nonclassical states of motion of the trapped ions and
achieving quantum computing with trapped ions are based
on the Jaynes-Cummings (JC) model [7], in which the ion
is assumed to behave two levels, the trap’s potential fol-
lows that of a quantized harmonic oscillator, and the radi-
ating lasers are considered to be classical forms of standing
or travelling waves. The general consideration is taken for
the case of Lamb-Dicke limit (LDL) under the weak ex-
citation regime (WER), which corresponds to the actual
case in present ion trap experiments [3]. The LDL means
that the ions move within the region of the space much
smaller than the effective wavelength of the laser, and the
WER means that the laser-ion interaction is much smaller
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than the trap frequency. For this case, some techniques
developed in the framework of cavity QED based on the
JC model can be immediately transcribed to the ion trap
system by taking advantage of the analogy between the
cavity QED and ion trap problem. In the case of motion
of ions exceeding the LDL, we can use the technique pro-
posed in reference [8]. In a word, under the rotating-wave
approximation (RWA), the problem of trapped ions inter-
acting with lasers is solvable. However, the strength of the
coupling between the ions and lasers can be conveniently
adjusted simply by changing the intensity of lasers. If the
coupling strength is much larger than the trap frequency,
called the strong excitation regime (SER), then the RWA
is no longer applicable since the rapidly oscillating (i.e.,
counter-rotating) terms also make a significant contribu-
tion to the interaction, which is very different from the
case in Cavity QED [9]. It has been reported that the
SER is useful for preparing nonclassical motional states
of a trapped ion and implementing quantum computing
with trapped ions [6,10–12]. For example in reference [10],
Schrödinger cat states could be prepared readily in the
SER. Based on that work, a proposal was made for mo-
tional state engineering and endoscopy in the SER [11]. As
the quantum state is sensitive to decoherence, the manipu-
lation of trapped ions in the SER is of experimental impor-
tance because of the great reduction of the operation time.
For the same reason, a scheme for hot-ion quantum com-
puting also requires the condition of the SER [6]. In con-
trast to the theoretical studies, the ion-laser interaction in
the SER has not yet been reported experimentally since
the high-laser intensity produces increased off-resonant
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Fig. 1. Level scheme of the internal structure of the trapped
ultracold ion, where |g〉 ↔ |e〉 is dipole forbidden.

excitation of carrier transitions which limits the final
ground state occupation achieved by the cooling pro-
cess [13]. The strong laser also modifies the original elec-
tronic levels of the ions [14], making the problem some-
what complicated. In a numerical study of the strong Ra-
man sideband excitation driving the vibrational ground
state of the trapped ion [15], it is shown that the non-RWA
interaction terms produce some limitations for two strong
laser beams detuned by the vibrational frequency to be
used as Raman motional displacement beams, whereas the
interaction is useful for the preparation of the Schrödinger
cat state.

Generally speaking, as the RWA is invalid, the ion trap
problem in the SER can not be solved analytically with the
JC model. So some approximations have to be introduced
as in references [10,11] and the studies in references [12,15]
with resort to numerical calculations. In fact, as shown in
reference [16], even if the ions are governed by the WER, in
which the RWA is valid, the deletion of the RWA can also
present some interesting results very different from those
obtained under the RWA. In that work, some particular
analytical solutions have been obtained in the absence of
the RWA for large detuning cases, and Schrödinger cat
states could be readily prepared. However, that work is
too simple. We hope to investigate the Raman configu-
ration which has been extensively applied in actual ion
trap experiments [3], instead of the simple case in refer-
ence [16]. We also hope to exclude the assumption related
to both the WER and LDL. Hence, in this contribution,
we attempt to undertake a more general and complete in-
vestigation of the trapped ion under the Raman process.
Moreover, a comparison of our results with those under
the RWA is made. In addition, we propose a scheme for
preparing the Schrödinger cat state beyond the WER.

2 Model and solution

We study a single ultracold ion radiated by lasers in the
Raman-Λ-type configuration, as shown in Figure 1. The
electronic structure shown is employed with two lower lev-
els |e〉 and |g〉 coupled to a common upper state |r〉, and
the two lasers with frequencies ω1 and ω2 respectively are
assumed to propagate along opposite directions. For a suf-

ficiently large detuning to the level |r〉, |r〉 may be adia-
batically eliminated. Then we have an effective two-level
system, in which the lasers drive the electric-dipole forbid-
den transition |g〉 ↔ |e〉. The dimensionless Hamiltonian
of such a system in the frame rotating with the effective
laser frequency ωl (= ω1 − ω2) can be written as [10]

H =
∆

2
σz + a+a+

Ω

2
(
σ+eiηx̂ + σ−e−iηx̂

)
(1)

where the detuning ∆ = (ω0 − ωl)/ν with ω0 being the
optical resonance frequency, i.e., the transition frequency
of two levels of the ion, and ν the frequency of the trap.
Ω is the dimensionless Rabi frequency and η the effec-
tive Lamb-Dicke parameter given by η = η1 + η2 with
subscripts denoting the counterpropagating laser fields.
σi (i = ±, z) are Pauli operators, x̂ = a+ +a is the dimen-
sionless position operator of the ion with a+ and a being
operators of creation and annihilation of the phonon field,
respectively. The notations “+” and “−” in front of iηx̂
indicate the absorption of a photon from one beam fol-
lowed by emission into the other beam and vice versa,
respectively. ν is generally supposed to be much greater
than the atomic decay rate, called the strong confinement
limit, neglecting the effect of the atomic decay. In general,
one may expand e±iηx̂ in equation (1) to the first-order
terms of ηx̂ and neglect other higher-order terms by sup-
posing the ion is governed by the WER (Ω � 1) and
within the LDL (η � 1). However, as we hope to treat
the problem more exactly and generally, we first perform
following unitary transformations on equation (1), that is

HI = V +U+HUV =
Ω

2
σz + a+a

+ g
(
a+ + a

)
(σ+ + σ−) + ε(σ+ + σ−) + g2 (2)

where

U =
(
D(β) −D(β)
D+(β) D+(β)

)
and V = 1√

2
e−iπa+a/2 with D(β) = eiη(a++a)/2, g = η/2

and ε = −∆/2. Actually, the unitary transformation U
made above is identical to that made in [17]. But to co-
incide with the standard form of the non-RWA model, V
is performed. Comparing with the standard non-RWA JC
model [9], there exists an additional driven term and an
additional constant term in equation (2), and the optical
resonance frequency is replaced by the Rabi frequency. In
what follows, we will adopt the coherent state represen-
tation [18], by which the non-RWA JC models have been
analytically treated [16,19]. Thus equation (2) is rewrit-
ten as

H =
Ω

2
σz + α

d
dα

+ g

(
α+

d
dα

)
(σ+ + σ−)

+ ε(σ+ + σ−) + g2 (3)

where α is a complex number, and∫
dαdα∗

2πi
exp

(
−|α|2

)
|α∗〉〈α∗| = 1
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2g2 −
�
1− 2g2 ± 2ε

� �
2 +Ω/2− 2g2 ± 2ε

�
+Ω +Ω2/4

2g2 − (1− 2g2 ± 2ε) (2−Ω/2− 2g2 ± 2ε)−Ω +Ω2/4
=

4g2
�
2 + 3Ω/4 − 2g2 ± 2ε

�
−Ω

�
g2 ∓ ε

� �
3± 2ε+Ω − 2g2

�

4g2 (2− 3Ω/4− 2g2 ± 2ε) +Ω
�
(1 +Ω/2) (2−Ω/2) + 2 (g2 ∓ ε)2 − 3 (g2 ∓ ε)

� · (7)

with the relation between the coherent state and Fock
state

|n〉 =
∫

dαdα∗

2πi
exp

(
−|α|2

)
|α∗〉 1√

n!
αn. (4)

Using the same idea as in references [16,19], we assume the
eigenfunction of the Schrödinger equation of equation (3)
takes the series form

Ψ(α) =
(
Ψ1(α)
Ψ2(α)

)
=
(

exp(−zα)
∑∞
n=0 bnα

n

exp(−zα)
∑∞
n=0 cnα

n

)
where z, bn and cn are constants determined later. Taking
Ψ(α) into the Schrödinger equation of equation (3) will
yield two recurrence relations

bn+1 =
1

g(n+ 1)

[(
E +

Ω

2
− n− g2

)
cn

+ (gz − ε)bn − gbn−1 + zcn−1

]
, (5)

cn+1 =
1

g(n+ 1)

[(
E − Ω

2
− n− g2

)
bn

+ (gz − ε)cn − gcn−1 + zbn−1

]
(6)

where E is the trial solution of the eigenenergy of equa-
tion (3). As the solution procedure is similar to that found
in reference [16], in what follows, we just list the results:
1. bn = cn = 0 for n ≥ 2, we have two solutions. One

is E1 = 1 + ε with E1 the eigenenergy of the system
in this case, corresponding to z = g and a restricted
relation of Ω = 2

√
1 + 2ε− 4g2. The other is E′1 =

1 − ε, with z = −g and a restricted relation of Ω =
2
√

1− 2ε− 4g2. The eigenfunctions for the above two
cases are respectively

Ψ(α) = e−gα
(
b0 + b1α
c0 + b1α

)
and

Ψ ′(α) = egα
(
b′0 + b′1α
c′0 − b′1α

)
,

where

c0 =
1−Ω/2 + 2ε− 2g2

1 +Ω/2 + 2ε− 2g2
b0,

b1 =
1
g

[(
1 +

Ω

2
− g2 + ε

)
c0 +

(
g2 − ε

)
b0

]
,

c′0 = −1−Ω/2− 2ε− 2g2

1 +Ω/2− 2ε− 2g2
b′0,

and

b′1 =
1
g

[(
1− ε− g2 +

Ω

2

)
c′0 −

(
g2 + ε

)
b′0

]
·

b0 and b′0 can be set to be 1 for normalisation;
2. bn = cn = 0 for n ≥ 3, the two solutions are E2 = 2±ε

corresponding to z = ±g and two independent re-
stricted conditions, which can be solve from the fol-
lowing equation,

see equation (7) above.

The eigenfunctions at this moment in the unit of b0 =
b′0 = 1 are, respectively,

Ψ(α) = e−gα
(

1 + b1α+ b2α
2

c0 + c1α+ b2α
2

)
and

Ψ ′(α) = egα
(

1 + b′1α+ b′2α
2

c′0 + c′1α− b′2α2

)
where

c0 =(
1−2g2+2ε

) (
2−Ω/2−2g2+2ε

)
+Ω−Ω2/4−2g2

(1−2g2+2ε) (2+Ω/2−2g2+2ε)−Ω−Ω2/4−2g2
,

c1 =
1
g

[
2 + ε− g2 − Ω

2
+
(
g2 − ε

)
c0

]
,

b1 =
1
g

[(
2 + ε− g2 +

Ω

2

)
c0 + g2 − ε

]
,

b2 =
1

2g2

{(
g2 − ε

) (
3−Ω + 2ε− 2g2

)
+ g2

+
[(

1 + ε− g2
)2 − 1− Ω2

4
− Ω

2
− g2 −

(
g2 − ε

)2]
c0

}
,

c′0 =

2g2−
(
1−2g2−2ε

) (
2−Ω/2−2g2−2ε

)
−Ω+Ω2/4

(1−2g2−2ε) (2+Ω/2−2g2−2ε)−Ω−Ω2/4−2g2
,

c′1 =
1
g

[
2− ε− g2 − Ω

2
−
(
g2 + ε

)
c′0

]
,

b′1 =
1
g

[(
2− ε− g2 +

Ω

2

)
c′0 − g2 + ε

]
,

and

b′2 =
1

2g2

{(
g2 + ε

) (
3−Ω − 2ε− 2g2

)
+ g2

+
[(

1− ε− g2
)2 − 1− Ω2

4
− Ω

2
− g2 −

(
g2 + ε

)2]
c′0

}
;
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3. when the above technique is extended to the case of
bn = cn = 0 for n ≥ N +1, the series solution becomes
very complicated. However the eigenenergy of the sys-
tem is still of the simple form, that is, EN = N ± ε,
corresponding to z = ±g and two independent sets of
much complicated expressions of restricted conditions
which we have to omit here.

3 Discussion

As limitations for both the Rabi frequency and Lamb-
Dicke parameter as well as the RWA are excluded in the
present treatment, the results we obtained above are more
exact and general than those depending on the RWA or
the approximate expansion of small values of η and Ω.
However, as the problem involving the counter-rotating
terms is non-integrable [16,18,19], the present solutions
obtained by the termination of the series of the trial solu-
tion Ψ(α) are not general and are only valid under some
restricted conditions related to some parameters of the
system. Nevertheless, with the present solutions, we can
investigate certain cases over a wide range of parameters,
particularly beyond the WER and LDL. It is also of in-
terest to make a comparison of our results with those ob-
tained under the RWA. Let us first consider a special case
with both Ω ∼ ε ≥ 1 and η → 0. In such a case, equa-
tion (3) is reduced to

Hs =
Ω

2
σz + α

d
dα

+ ε(σ+ + σ−).

Repeating the above procedure of the series solution for
the simplest case, i.e., bn = cn = 0 for n ≥ 2, we can find
z = 0 and

Ψ s =
(
b0 + b1α
c0 + c1α

)
with

c0 =
Es −Ω/2− 1

ε
b0,

c1 =
Es −Ω/2− 1

ε
b1

and

Es = 1±
√
ε2 +

Ω2

4
·

We can easily find that the eigenenergy Es is in good
agreement with the solution for a Fock state representa-
tion for n = 1. However, to make a comparison for eigen-
functions with the former solutions, we have to return to
the original representation before equation (2). The eigen-
function in the original representation is

Ψos = UV Ψ s ≈ 1√
2

(
1 −1
1 1

)
Ψ s(α)e−iπa+a/2

=
1√
2

(
(b0 − c0)|0〉 − i(b1 + c1)|1〉
(b0 + c0)|0〉 − i(b1 + c1)|1〉

)
(8)

where we use the fact [16,18] that egααn in a coherent
state representation corresponds to the displaced Fock

states |n, g〉 as given by equation (4) and the Baker-
Campbell-Hausdorff formula. Therefore, in the case of
Ω � 1 but ε� 1, we have from equation (8)

Ψos ∼
(

1
0

)
or
(

0
1

)
,

which means no transitions existing in the large detuning
case. If we assume ε → 0 and Ω is an arbitrary positive
real number, we have

Ψos ∼
(

1
1

)
,

which corresponds to the carrier excitation. Both solutions
above are also in good agreement with the solutions in a
Fock state representation [12]. However, from equation (8)
we can know that, unlike the former solutions for the WER
case, the probability amplitudes of up and down states of
the ion are different and complicated in the case of the
SER with large detunings. This is a new result which has
not been obtained before by general approaches made in
a Fock state or dressed state representation.

For a more general comparison, we should first present
the solutions under the RWA. As referred to in Section 1,
equation (1) can be treated as a nonlinear JC model with
the approach proposed in reference [8] under the RWA.
However, to make the comparison clearer and simpler, we
start our RWA treatment from equation (2). By perform-
ing a unitary transformation exp[−i(Ω2 σz+ a+a

2M )t] on equa-
tion (2) with M = 1, 2, 3, ..., we can obtain

HM =
(
1− 2−M

)
a+a+ g

(
a+σ− + aσ+

)
+ g2 (9)

corresponding to the resonance conditions of Ω = 2−M
under the RWA, and the eigenenergy in a Fock state rep-
resentation is of the form

E±M =
(
1− 2−M

)(
n+

1
2

)
+
η2

4

± 1
2

√
η2(n+ 1) + (1− 2−M )2 (10)

with n = 0, 1, 2, ...Meanwhile, performing a unitary trans-
formation of exp[−i( Ω

2Kσz + a+a
2 )t] on equation (2) with

K = 1, 2, 3, ..., under the RWA resonance conditions of
Ω = K, we have

HK =
K − 1

2K
Ωσz + g

(
a+σ− + aσ+

)
+ g2 (11)

whose eigenenergy in a Fock state representation is of the
form

E±K =
η2

4
± 1

2

√
η2(n+ 1) + (K − 1)2 (12)

with n = 0, 1, 2, ...
As shown in the last section, although our method can

in principle present all series solutions, we merely present
the specific forms of the non-RWA solution for the two
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Fig. 2. Variation of E with respect to η in the case of Ω = 0.5, where solid curves from the bottom to top are RWA solutions
of equation (10), corresponding to n = 0, 1, 2, 3, 4, 5 and 6, respectively, dot-dashed curve is the solution of equation (13) and
dashed curves are from equation (A.3) or equation (A.4) (because the solutions of Eqs. (A.3, A.4) are identical); (a) demonstrates
E+, and (b) is for E−.

simplest cases. Here we will use those two cases for a com-
parison with equations (10, 12). For case 1, we find that
the two solutions for E = 1±ε, along with two different re-
stricted relations respectively, actually correspond to the
same expression

E =
1
2

+
1
2
η2 +

1
8
Ω2. (13)

However, for case 2, the situation is somewhat compli-
cated. The direct algebra shown in Appendix presents four
solutions of E for this case, whereas the specific calcula-
tion shows that the solutions of equations (A.3, A.4) are
actually identical.

In Figures 2 and 3, the solutions under the RWA are
compared with those for the non-RWA treatment in the
case of Ω = 0.5 and 3.0. We can find that, in the case of
small values of Ω and η, some of the solutions under the
RWA can approach those without the RWA. It is phys-
ically reasonable because the RWA is only valid for the
WER and LDL. However, although the solutions without
the RWA are exact, only a few of these solutions can be
obtained for a certain termination of the series solution.
We can not obtain all the particular solutions of the sys-
tem unless we make the termination of the series solution
for almost infinite times up to the case with infinite series
terms. In contrast, the RWA treatment can present gen-
eral solutions, like equations (10, 12). Nevertheless, as it
merely retains some resonance terms in the Hamiltonian,
a specific solution under the RWA only corresponds to a
specific value of Ω. Moreover, the figures tell us that, only
when the value of η is not taken to be larger than 0.1, can
we consider that the solutions under the RWA and without
the RWA are in good agreement in the case of the WER.
The RWA description is obviously inaccurate for the case
beyond the LDL although Ω is less than 1.0 in this case.
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 η

1

1.5
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2.5

3
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4

E

Fig. 3. Variation of E with respect to η in the case of Ω = 3.0,
where solid curves from the bottom to top are RWA solutions of
equation (12) for the case of E+, corresponding to n = 0, 1, 2,
3, 4, 5 and 6, respectively, the dot-dashed curve is the solution
of equation (13) and dashed curves are from equation (A.3) for
cases of E± respectively.

When the value of Ω is larger, the difference between the
RWA case and non-RWA one becomes great, as shown in
Figure 3. It is difficult to find any correspondence for the
two cases. However, there are some crossing points be-
tween the RWA solutions and non-RWA ones. This means
at certain values of η, the solutions for eigenenergies in
these two cases can be the same. In physics, it can be
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considered that the non-RWA solutions are some isolated
ones, merely corresponding to those of up internal levels of
the ion. One may not expect to obtain the general eigenen-
ergies with our non-RWA treatment. However, the demon-
stration of above series solutions means the existence of
the finite dimensional invariant subspace of some opera-
tors. Particularly from the simple forms of the eigenen-
ergies, one may expect that the quantum KAM theorem
should be applicable to the SER problem [20].

Before ending our discussion of the usefulness of non-
RWA solutions, it is also of interest to present a practi-
cal example of preparing the nonclassical motional states
of the ion with our solutions. As referred to in Sec-
tion 1, there is a considerable interest in investigating the
SER, particularly to rapidly prepare nonclassical motional
states of the ion. In fact, with the results in the present
paper, one can also generate some particular nonclassical
states through suitable adjustment of the Rabi frequencies
and proper measurements. For example, consider the sim-
plest case, i.e., the case 1 in Section 2. For the case of the
resonance (ε = 0), we have E1 = E′1 with the same Ω and
double degenerate eigenfunctions Ψ(α) and Ψ ′(α). Trans-
forming our results into the Schrödinger representation
yields the states Φ(t) = exp (−iE1t+ iωlσzt/2)UV Ψ(α)
and Φ′(t) = exp (−iE1t+ iωlσzt/2)UV Ψ ′(α), respectively.
In the case of the LDL (g � 1), the Rabi frequency Ω

would be 2
√

1− 4g2 ∼ 2. So we have

c0 ∼
g2

g2 − 1
b0,

b1 ∼
g

g2 − 1
b0,

c′0 ∼
g2

g2 − 1
b′0

and
b′1 ∼

g

g2 − 1
b′0.

By controlling the evolution time t = 4π/ωl, and measur-
ing the excited state of the ion, we can obtain a displaced
even coherent state, a kind of Schrödinger-cat states

ΦM ∼ 1√
2
D(β)

(
|iη

2
〉+ | − i

η

2
〉
)

=
1√
2

(|iη〉+ |0〉) (14)

where the relation between the coherent state and Fock
state has been used. As the Rabi frequency approaches 2,
such a preparation is obviously outside the WER.

4 Conclusion

As egααn corresponds to the displaced Fock states |n, g〉,
the eigenfunctions of the system we obtained are infinite
superposition of displaced Fock states. Therefore, it is un-
derstandable that we can not obtain similar analytical
results by general Fock state expansion. The obvious ad-
vantage of our approach is the possibility to obtain some
relations between parameters of the system correspond-
ing to certain nonclassical states by truncating the series

expansion step by step. So as long as we can reach these
conditions experimentally, the different nonclassical states
predicted by our theory would be obtained.

In summary, the Raman interaction between a trapped
ultracold ion and two travelling wave lasers has been
treated analytically in an interaction representation, with-
out consideration of the RWA and the limitation for both
the LDL and WER. Although the coherent state expan-
sion technique was used previously for treating a similar
problem, and the solutions we presented here are some iso-
lated ones under certain conditions related to Ω, η and ∆,
the present investigation is more general and exact. Hence
we can study the ion trap problem in a wide range of
parameters and compare our results with other approxi-
mate works or numerical solutions in this respect as we
did in the present paper and for the cavity-atom prob-
lem [21]. More importantly, the Raman process has been
widely used for the laser-cooling in current ion trap experi-
ments, and the work outside the WER is attracting much
interest from experimentalists. One possible way [10] to
experimentally realizing the SER is that the ion is first
cooled within the LDL and under the WER, and then the
trap frequency is decreased by opening the trap adiabat-
ically so that the ratio of the Rabi frequency to the trap
frequency is increased to a large number. Therefore, we
believe that the difficulties in realizing the SER will soon
be overcome, and our work would be helpful for any pos-
sible future exploration of the quantum properties of the
ion-trap system outside the WER.

The author sincerely thanks M.A. Kornberg for his carefully
reading of the manuscript. The work is partly supported by
National Natural Science Foundation of China.

Appendix

To obtain a more specific expression of the eigenenergy for
case 2 in Section 2, we can suppose X = ε−g2 for the case
of z = g and Y = ε + g2 for z = −g. Direct algebra on
equation (7) can present the following two second-order
differential equations

AX2 +BX + C = 0 (A.1)

and

AY 2 −BY + C = 0 (A.2)

with

A = 8(1− g2),

B =
(

3 +
Ω

2

)
(2 +Ω)

(
2− Ω

2

)
− 3

(
Ω

2
− 2 +

Ω2

4
+ 2g2

)
− 28g2 − (3 +Ω)

(
2 +

Ω

2
− Ω2

4
− 2g2

)
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and

C = −
[(

Ω

2
− 2 +

Ω2

4
+ 2g2

)(
1 +

Ω

2

)(
2− Ω

2

)
+20g2 − 6g2

(
Ω2

4
+ 2g2

)]
·

So we can obtain the eigenenergies

E±1 = 2 + g2 +
−B ±

√
B2 − 4AC
2A

(A.3)

for the case of z = g and

E±2 = 2 + g2 − B ±
√
B2 − 4AC
2A

(A.4)

for the case of z = −g.
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